
GRASP/Ada

Graphical Representations of Algorithms, Structures, and Processes for Ada

Update of GRASP/Ada
Reverse Engineering Tools For Ada

Final Report

Delivery Order No. 13
Basic NASA Contract No. NAS8-39131

im

Department of Computer Science and Engineering

Auburn University, AL 36849-5347

".2SZ

Contact: James H. Cross II, Ph.D.

Principal Investigator
(205) 844-4330

cross@eng.auburn.edu

December 31, 1992

_F

t
t

N ASA
NATIONAL AERONAUTICS •

SPACE ADMINISTRATION

1, P_:O4qT NO

Report Documentation
2. OO_RNMEHT AC_ESaK_ NO

4. _TLE _0 SUeTITLE

Update of GRASP/ADA

Reverse Engineering Tools for Ada

7 AUTHOR(S1

James H. Cross II, Ph.D.

O PE_ORMI_CM:V3ANI_TIONNAILAEN_AZX3RE_

Auburn University

Computer Science and Engineering

Auburn University, AL 36849-5347

12 SP(_SIC_NO AOENCY N,4.tAE AND ADD_SS

National Aeronautics and Space Administration

Washington, D.C. 20546-0001

Marshall Space Flight Center, MSFC, AL 35812

I$. SUI=PL_I_NTARY NO T1ES

Page
r_,Ic_CIPtENT'SCATALC)O NO

S. F_ DATE

December 31, 1992

II P E I_r',OIr%_ NO ,{:,ROANI ZA T ION C OOIE

CSE, Auburn University

g RE RFO_NG O_O_ZA r_3_ RE P_OR r _o

CSE 92-10

I0. WC)_W(UNI T NO.

Delivery Order No. 13

!,I CO_.RACtO_IOnANT NO.

Basic NASA Contract No.

NAS 8-39131

_:L m,'PE Oe REI_IT ANO PEP_O CO_EI:)

Final Report

July l-December 31, 1992

_4. _o_No .4,_E_y CCX3E

I_. ABSTFLAC T

Update of prototype created by the GRASP/Ada project (Graphical Representation of

Algorithms, Structure and Processes), which generates control structure diagrams from
Ada source code.

,,._wc_o,f,uoo_,,Eoev_..o_s,

Reverse Engineering, Ada

Detailed Design, Maintenance

Ill DIBTI_BUTION STATEJ, AENT

I

UnlimXted

m

t0. SECUi_ITY CLA_tF. (_ T_4S REPC_T1 :_0 r_EOU4_rYCt.AB_F F:_ TT'eSPAOEI

Unclassified

_t. NO. O(= PAO_E S

52

;_. PRICE

l- 4

m

W

B

N

,m_*r

R

m

R

l

__~

B

Update of GRASP/Ada

Graphical Representations of Algorithms, Structures, and Processes for Aria

Reverse Engineering Tools For Ada

Final Report

Delivery Order No. 13
Basic NASA Contract No. NAS8-39131

James H. Cross H, Ph.D.
Principal Investigator

December 31, 1992

Abstract

The GRASP/Ada project (GraphicaI Representations of Algorithms, Structures,
and Processes for Ada) has successfully created and prototyped a new algorithmic
level graphical representation for Ada software, the Control Structure Diagram
(CSD). The primary impetus for creation of the CSD was to improve the
comprehension efficiency of Ada software and, as a result, improve reliability and
reduce costs. The emphasis has been on the automatic generation of the CSD from
Ada PDL or source code to support reverse engineering and maintenance. The CSD
has the potential to replace traditional prettyprinted Ada source code. In Phase 1 of
the GRASP/Ada project, the CSD graphical constructs were created and applied
manually to several small Ada programs. A prototype (Version 1) was designed and
implemented using FLEX and BISON running under VMS on a VAX 11-780. In
Phase 2, the prototype was improved and ported to the Sun 4 platform under UNIX.
A user interface was designed and partially implemented using the HP widget toolkit
and the X Windows System. In Phase 3, the user interface was extensively reworked
using the Athena widget toolkit and X Windows. The prototype was applied
successfully to numerous Ada programs ranging in size from several hundred to
several thousand lines of source code. Following Phase 3, the prototype was
evaluated by software engineering students at Auburn University and then updated
with significant enhancements to the user interface including editing capabilities.
Version 3.2 of the prototype has been prepared for limited distribution to facilitate
further evaluation. The current prototype provides the capability for the user to
generate CSDs from Ada PDL or source code in a reverse engineering as well as
forward engineering mode with a level of flexibility suitable for practical application.

ACKNOWLEDGEMENTS

r_

L_
m

E

J

We appreciate the assistance provided by NASA personnel, especially Mr.
Keith Shackelford whose guidance has been of great value. The following is an

alphabetical listing of the team members who have participated in various phases of
the project. An asterisk (*) indicates the team member worked on the Update of

GRASP/Ada addressed in this report.

Principal Investigator:

Dr. James H. Cross II, Principal Investigator*

Graduate Research Assistants:

Richard A. Davis

Charles H. May
Kelly I. Morrison*
Timothy A. Plunkett

Narayana S. Rekapalli*
Darren Tola

The following trademarks are referenced in the text of this report.

Aria is a trademark of the United States Government, Ada Joint Program Office.

AdaVision is a trademark of Sun Microsystems, Inc.

PostScript is a trademark of Adobe Systems, Inc.

Software through Pictures (StP), Ada Development Environment (ADE), and
IDE are trademarks of Interactive Development Environments.

VAX and VMS are trademarks of Digital Equipment Corporation.

VERDIX and VADS are trademarks of Verdix Corporation.

UNIX is a trademark of AT&T.

ii

TABLE OF CONTENTS

ram"

l=a

Em

i

m
w

z

i

lm

l
m

_r

1.0 Introduction ... 1
1.1
1.2

1.3

1.4

Phase 1 - The Control Structure Diagram For Ada 1

Phase 2 - The GRASP/Ada Prototype and User Interface 1
Phase 3 - CSD Generation Prototype and Preliminary Object Diagram

Prototype ... 2
Update of the GRASP/Aria 2

2.0 The Control StructureDiagram 4

3.0 The GRASP/Ada System Model 9

4.0 User Interface ... 10

4.1 System Window 10
4.2 Control Structure Diagram Window 11

4.3 User Interface Summary 15

5.0 Control Structure Diagram Generator 16
5.1 Generating the CSD 16
5.2 Displaying the CSD - Screen and Printer 16

5.3 Displaying the CSD - Future Considerations 17
5.4 Incremental Changes to the CSD 17
5.5 Internal Representation of the CSD - Alternatives 18

6.0 Evaluation of the Control Structure Diagram and GRASP/Ada 20
6.1 The Subjects ... 20
6.2 The Evaluation Instrument 20

6.3 The Evaluation Results 21

7.0 Conclusions and Future Directions 28

REFERENCES .. 29

APPENDICES .. 31

A. Getting Started .. A-0

B. Integrating GRASP/Ada with Software through Pictures (StP) B-0

C. Evaluation Instrument C-0

iii

t_
LIST OF FIGURES

_9

m

N

_tJ

u

Figure 1.

Figure 2.

Figure 3.

Aria Source Code for Procedure SearchArray 5

CSD for Procedure SearchArray 6

Ada Source Code for Task Body Controller 6

Figure 4. CSD for Ada Task Body Controller 6

Figure 5. Control Structure Diagram Constructs for Ada 8

Figure 6. GRASP/Ada System Block Diagram 9

Figure 7. GRASP/Ada System Window 10

Figure 8. General Options .. 11

Figure 9. CSD Options .. 11

Figure 10. CSD Window File Options 11

Figure 11. CSD Window with Procedure Provided by NASA After CSD

Generation .. 12

Figure 12. CSD Window with Ada Constructs - procedure body selected 13

Figure 13. CSD Window with Program Structure Resulting from Clicking on Four

Ada Constructs: procedure body, while loop, iflthen/else, and for loop 14

Figure 14. GRASP/Aria CSD Window with Pspec for Generatejnvoice in StP B - 4

iv

LIST OF TABLES

L

mac

g

w

m

m
m

E

Rm¢

W

Table 1.

Table 2.

Table 3.

Table 4.

Table 5.

Table 6.

Table 7.

Table 8.

ITEM ANALYSIS FOR GRAPHICAL REPRESENTATIONS 23

ITEM RESPONSE FREQUENCY 23

PERCENTAGE SCORE FOR GRAPHICAL REPRESENTATIONS 23

PERCENTAGE SCORE DIFFERENCE - CSD Compared to Others 24

PERCENTAGE SCORE DIFFERENCE - AD Compared to Others 24

PERCENTAGE SCORE DIFFERENCE - WO Compared to Others 24

PERCENTAGE SCORE DIFFERENCE - NS Compared to Others 25

PERCENTAGE SCORE DIFFERENCE - FC Compared to Others 25

V

g

L _

lil

m

m

M
m

!
i

m

W

1.0 Introduction

Computer professionals have long promoted the idea that graphical representations of
software can be extremely useful as comprehension aids when used to supplement textual

descriptions and specifications of software, especially for large complex systems [SHU88,

AOY89, SCA89]. The general goal of this research has been the investigation, formulation
and generation of graphical representations of algorithms, structures, and processes for Ada

(GRASP/Ada). This specific task has focused on reverse engineering of control structure

diagrams from Ada PDL or source code.

Reverse engineering normally includes the processing of source code to extract higher
levels of abstraction for both data and processes. The primary motivation for reverse

engineering is increased support for software reusability, verification, and software
maintenance, all of which should be greatly facilitated by automatically generating a set of
"formalized diagrams" to supplement the source code and other forms of existing

documentation. The overall goal of the GRASP/Ada project is to provide the foundation for
a CASE (computer-aided software engineering) environment in which reverse engineering and

forward engineering (developmen0 are tightly coupled. In this environment, the user may
specify the software in a graphically-oriented language and then automatically generate the

corresponding Aria code [ADA83]. Alternatively, the user may specify the software in Ada

or Ada/PDL and then automatically generate the graphical representations either dynamically
as the code is entered or as a form of post-processing.

The GRASP/Ada project was divided into three primary development phases followed
by an evaluation and update phase. Each of these phases is briefly described below.

I.I Phase I. The Control Structure Diagram For Ada

Phase 1 focused on a survey of graphical notations for software with concentration
on detailed level diagrams such as those found in [MAR85, TRI89], and the development of
a new algorithmic or PDL/code level diagram for Ada. Tentative graphical control constructs
for the Control Structure Diagram (CSD) were created and initially prototyped in a
VAX/VMS environment. This included the development of special diagramming fonts for
both the screen and printer and the development of parser and scanner using UNIX based
tools such as LEX and YACC. The CSD is described in Section 2.0.

1.2 Phase 2 - The GRASP/Ada Prototype and User Interface

During Phase 2, the prototype was extended and ported to a Sun/UNIX environment.
The development of a user interface based on the X Window System represented a major part

of the extension effort. Verdix Ada and the Verdix DIANA interface were acquired as

potential commercial tools upon which to base the GRASP/Ada prototype. Architectural

diagrams for Ada were surveyed and the OOSD notation [WAS89] was identified as having

good potential for accurately representing many of the varied architectural features of an Ada

software system. Phase 2 also included the preliminary design and a separate exploratory

==--

igm_'

i
i

i

II
I
I

prototype for an architectural CSD. The best aspects of architectural CSD are expected m

be integrated into the fully operational GRASP/Ada prototype during a future phase of the

project.

1.3 Phase 3 - CSD Generation Prototype and Preliminary Object Diagram Prototype

Phase 3 has had two major thrusts: (I) completion of an operational GRASP/Aria

prototype which generates CSDs and (2) the development of a preliminary prototype which

generates object diagrams directly from Ada source code. Completion of the GRASP/Aria

CSD prototype (CSDgen) included the addition of substantial functionality, via the User

Interface, to make the prototype easier to use. CSDgen was installed and demonstrated on

a Sun workstation at Marshall Space Flight Center, Alabama.

The development of a preliminary prototype for generating architectural object

diagrams (ODgen) for Aria source/PDL was an effort to determine feasibility rather than to

deliver an operational prototype as was the case with CSD generator above. The preliminary

prototype has indicated that the development of the components to recover the information

to be included in the diagram, although a major effort, is relatively straightforward.

However, the research has also indicated that the major obstacle for automatic object diagram

generation is the automatic layout of the diagrams in a human readable and/or aesthetically

pleasing format. A user extensible rule base, which automates the diagram layout task, is

expected to be formulated during future GRASP research. Interactive Development

Environment's Software through Pictures 0DE/StP), which supports the OOSD notation in

a forward engineering sense, has been identified as a candidate for a commercial CASE

environment with which to integrate GRASP/Ada reverse engineering system.

1.4 Update of the GRASP/Ada

Following Phase 3, the Version 3.1 prototype was used in several software engineering

classes at Auburn University, evaluated, and enhanced to create Version 3.2. The following

tasks were performed during the current effort as an update to GRASP/Ada.

(1) The Graphical Representation of Algorithm, Structures, and Processes

(GRASP) Ada tool was evaluated and modified. As part of the ongoing

evaluation of GRASP/Ada, GRASP/Ada was used in CSE 422 (Introduction

to Software Engineering). An evaluation instrument was developed and

administered to collect feedback from the students prior to widespread release

to academic, business, and industrial communities. As a result of the

evaluation, numerous modifications and enhancements were made to the User

Interface. The evaluation is described in Section 6.0.

(2) The work in progress of the GRASP Ada evaluation and modification

were presented at the Reverse Engineering Forum, Burlington, MA,

September 15-17, 1992.

(4) The UNIX Command Set was updated to reflect changes to the prototype

tool. In particular, makefiles were streamlined to make recompilation and

installation more straightforward.

2

r--

mi7

(5) The Man Page and Getting Started were written for the GRASP

prototype. Although the window-based User Interface is relatively intuitive,

one of items requested most by the students that evaluated the prototype was

a User Manual. While Getting Started (see Appendix A) and the Man Page

provide necessary user information, a formal user manual is expected to be

developed as part of a future GRASP/Ada update.

(3) GRASP/Aria was extended to facilitate use with the CASE tool, "Software

Through Pictures" from Interactive Development Environments, Inc. The

prototype was modified so that it could be invoked fTom StP with a pspec or

PDL file. Appendix B provides a description of this procedure.

(6) The GRASP Ada prototype was prepared for limited distribution via the

network. To date, over 200 requests for information regarding GRASP/Ada

have been received as a result of publications generated from this research.

Responding to these requests is an important element of the ongoing

evaluation and refinement of the GRASP/Aria reverse engineering tool.

The following sections describe the control structure diagram, the GRASP/Ada system model,

the user interface, the control structure diagram generator, evaluation of the CSD and

prototype, and future requirements. The overall rationale for the development of the CSD

is described in [CRO90a, CROg0b], which were written during Phase 1. A taxonomy and

extensive literature review of reverse engineering can be found in [CHI90, CRO92], which

were written during Phases 2 and 3.

3

E

2.0 The Control Structure Diagram

Advances in hardware and software, particularly high-density bit-mapped monitors and

window-based user interfaces, have led to a renewed interest in graphical representation of

software. Although much of the research activity in the area of software visualization and

computer-aided software engineering (CASE) tools has focused on architectural-level charts

and diagrams, the complex nature of the control constructs and control flow defined by

programming languages such as Ada and C and their associated PDLs, makes source code

and detailed design specifications attractive candidates for graphical representation. In

particular, source code should benefit from the use of an appropriate graphical notation since

it must be read many times during the course of initial development, testing and maintenance.

The control structure diagram (CSD) is a notation intended specifically for the graphical

representation of algorithms in detailed designs as well as actual source code. The primary

purpose of the CSD is to reduce the time required to comprehend software by clearly

depicting the control constructs and control flow at all relevant levels of abstraction. The

CSD is a natural extension to existing architectural graphical representations such as data

flow diagrams, structure charts, and object diagrams.

The CSD, which was initially created for Pascal/PDL [CRO88], has been extended

significantly so that the graphical constructs of the CSD map directly to the constructs of

Ada. The rich set of control constructs in Ada (e.g. task rendezvous) and the wide

acceptance of Ada/PDL by the software engineering community as a detailed design language

made Ada a natural choice for the basis of a graphical notation. A major objective in the

philosophy that guided the development of the CSD was that the graphical constructs should

supplement the code and/or PDL without disrupting their familiar appearance. That is, the

CSD should appear to be a natural extension to the Ada constructs and, similarly, the Ada

source code should appear to be a natural extension of the diagram. This has resulted in a

concise, compact graphical notation which attempts to combine the best features of

diagraming with those of well-indented PDL or source code.

2.1 Background

Graphical representations have been recognized as having an important impact in

communicating from the perspective of both the "writer" and the "reader." For software, this

includes communicating requirements between users and designers and communicating design

specifications between designers and implementors. However, there are additional areas

where the potential of graphical notations have not been fully exploited. These include

communicating the semantics of the actual implementation represented by the source code

to personnel for the purposes of testing and maintenance, each of which are major resource

sinks in the software life cycle. In particular, Selby [SEL85] found that code reading was

the most cost effective method of detecting errors during the verification process when

compared to functional testing and structural testing. And Standish [STAB5] reported that

program understanding may represent as much as 90% of the cost of maintenance. Hence,

improved comprehension efficiency resulting from the integration of graphical notations and

source code could have a significant impact on the overall cost of software production.

4

E

_r

,k3

L_

!

m

g_

Since the flowchart was introduced in the mid-50's, numerous notations for

representing algorithms have been proposed and utilized. Several authors have published
notable books and papers that address the details of many of these [MAR85, TRI88,
SHN77]. Tripp, for example, describes 18 distinct notations that have been introduced since
1977 and Aoyama et.al, describes the popular diagrams used in Japan. In general, these

diagrams have been strongly influenced by structured programming and thus contain control

constructs for sequence, selection, and iteration. In addition, several contain explicit EXIT
structures to allow single entry / multiple exit control flow through a block of code, as well

as PARALLEL or concurrency constructs. However, none the diagrams cited explicitly
contains all of the control constructs found in Ada.

Graphical notations for representing software at the algorithmic level have been
neglected, for the most part, by business and industry in the U.S. in favor of non-graphical

PDL. A lack of automated support and the results of several studies conducted in the

seventies which found no significant difference in the comprehension of algorithms

represented by flowcharts and pseudo-code [SHN77] have been a major factors in this
underutilization. However, automation is now available in the form of numerous CASE tools
and recent empirical studies reported by Aoyami [AOY89] and Scanlan [SCA89] have

concluded that graphical notations may indeed improve the comprehensibility and overall
productivity of software. Scanlan's study involved a well-controlled experiment in which

deeply nested if-then-else constructs, represented in structured flowcharts and pseudo-code,

were read by intermediate-level students. Scores for the flowchart were significantly higher
than those of the PDL. The statistical studies reported by Aoyami et.al, involved several tree-

structured diagrams (e.g., PAD, YACC II, and SPD) widely used in Japan which, in
combination with their environments, have led to significant gains in productivity. The
results of these recent studies suggest that the use of a graphical notation with appropriate

automated support for Ada/PDL and Ada should provide significant increases productivity

over current non-graphical approaches.

2.2 The Control Structure Diagram Illustrated

Two examples are presented below to illustrate the CSD. The first shows the basic
control constructs of sequence, selection and iteration in Ada. These three control constructs

are common to all structured procedural languages such as Ada, C, and Pascal. The second

example illustrates a more complex control construct, the task rendezvous in Ada.

Figure 1 contains an Ada procedure called SearchArray that searches an array A of
elements and counts the number of elements above, below, and/or equal to a specified

element. Figure 2 contains the CSD for SearchArray which includes the three basic control

constructs sequence, selection, and iteration. Although this is a very simple example, the

CSD clearly indicates the levels of control inherent in the nesting of control statements. For
example, at level 1 there are four statements executed in sequence - the three assignment

statements and the for loop. The for loop defines a second level of control which contains

a single statement, the/f statement, which in turn def'mes three separate level 3 sequences,

each of which contains one assignment statement. It is noteworthy that even the CSDs for
most production strength procedures rarely contain more than ten statements at level 1 or in
any of the subsequences defined by control constructs for selection and iteration. This
graphical chunking on the basis of functionality and level of control appears to have a

substantial positive effect on detailed comprehension of the software.

5

procedure SearchArray (A : in ArrayType;

Element: in ElementType;

Above,Below, EqualTo: out integer)

beg£n

Above := 0;

Below := 0;

EqualTo := 0;

for index in A'first..A'last loop

if Element > A(index) then

Below := Below + i;

elsif Element < A(index) then

Above := Above + I;

else

EqualTo := EqualTo + i;

end if;

end loop;

end SearchArray;

is

Figure I. Ada Source Code for Procedure

SearchArray.

procedure SearchArray (A : in ArrayType;

Element: in ElementType;

Element: in ElementType;

Above, Below, EqualTo: out integer) is

begin

--Above := 0;

-- Below := 0;

-- EqualTo := O;

for index in A'first..A'last loop

if Element > A(index) then

i_ Below := Below + i;

H _elsif Element < A(index) then

II _-- Above := Above + I;

else

u___ EqualTo := EqualTo + I;

L

end if;

Uend loop;

end SearchArray;

Figure 2. CSD for Procedure SearchArray.

Figures 3 and 4 contain an Ada task body CONTROLLER adapted from [BAR84],

which loops through a prioritylistattemptingtoacceptselectivelyaREQUEST with priority

P. Upon on acceptance,some actionistaken,followed by an exitfrom the prioritylistloop

to restartthe loop with the firstpriority.In typicalAda taskfashion,the prioritylistloop is

contained in an outer infiniteloop. This shortexample containstwo threadsof control:the

rendezvous, which entersand existsatthe accept statement,and the threadwithin the task

body. In addition,the prioritylistloop containstwo exits:the normal exitat the beginning

of the loop when the prioritylisthas bccn exhausted,and an explicitexitinvoked within the

task body TASK_NAME is

begin

loop

for p in PRIOITY loop

select

accept REQUEST(p) (D: DATA) do

ACTION (D) ;

end;

exit;

else

null;

end select;

end loop;

end loop;

end TASK_NAME;

Figure 3. Ada Source Code for Task Body
Controller.

/
/task body TASK NAME is

begln

-- loop

-- for p in PRIOITY loop
select

-_ accept REQUEST(p)

e_ndACTION (D) ;

4- _ exit;

null;

end select;

end loop;

end loop;

end TASK_NAME;

Figure 4. CSD for Ada
Controller.

(D: DATA) do

Task Body

6

W

ale._
llgl

select statement. While the concurrency and multiple exits are useful in modeling the

solution, they do increase the effort required of the reader to comprehend the code.
The CSD in Figure 4 uses intuitive graphical constructs to depict the point of

rendezvous, the two nested loops, the select statement guarding the accept statement for the

task, the unconditional exit from the inner loop, and the overall control flow of the task.

When reading the code without the diagram, as shown in Figure 3, the control constructs and

control paths are much less visible although the same structural and control information is
available. With additional levels of nesting and increased physical separation of sequential
components, the visibility of control constructs and control paths becomes increasingly

obscure, and the effort required of the reader dramatically increases in the absence of the
CSD. Now that the CSD has been briefly introduced, the various CSD constructs for Ada

are presented in Figure 5. Each of the CSD constructs should be relatively self-explanatory
since the CSD is designed to supplement the semantics of the underlying Ada.

2.3 Observations

The control structure diagram is a new graphical tool which maps directly to Ada and
Ada PDL. The CSD offers advantages over previously available diagrams in that it is

combines the best features of PDL and code with simple intuitive graphical constructs. The
potential of the CSD can be best realized during detailed design, implementation, verification
and maintenance. The CSD can be used as a natural extension to popular architectural level
representations such as data flow diagrams, object diagrams, and structure charts.

The GASP/Ada prototype, described in the following sections, provides for the
automatic generation of the CSD from Ada or Ada PDL

/ 7

m

IE!

m
m

i

m

-- ABORT

bort P;

g;

B;

aadj

-- BLOCK WITH DBCLARATIONS

-- CASE

_--S; n 18

I _d cue_
p.-- s;

-- EXCEPTION HANDLER

except io_

--FOR

_o_rs,P" in R loop

-- CO TO

-_ <<L>>
S;

B;

4- goto L;

-- _JARDED SELECT

--8;
8elect

when C1 =>

t Md

-- null;

or

_ select _

-- Z¥

!

g;

lg;

--]_IPINITE LOOp

g;

-- LOOP EXIT

_---- exit when C;

I _ zoop,

-- PACKAGE

Y la

e Z;

[end_ Z ¢eturn Boolean

-- PROCEDURE

ure X 18

S;

--]_AI BE

$;
ral_e]_rr;

-- R_DEZVOUS (RECEI_IZR)

_t C do

B;

-- IIEL_"T

I lt='

S;
g;

S;

-- T_K S_IFICATION

-- TERMI_RATE ALTERNATIVE ,
-- S;

8elect

__ ni

t Fdo

¢

end lelect ;

--S;

-- WHILE

-- B;
I-_lle C loop

Sloop;

_--s;

Figure 5. Control Structure Diagram Constructs for Ada.

8

T

3.0 The GRASP/Ada System Model

2

= _.

[]

u

m

I

i

m
i

I

W

!

i
mi

I
m
_m

i

m

U

The major system components of

the GRASP/Ada system are shown in the

block diagram in Figure 6. The User

Interface was built using the X Window

System and includes a special CSD

window (modified text editor) and

provides general control and coordination

among the other components.

The control structure diagram

generator, CSDgen, inputs Ada PDL or

source code and produces a CSD.

CSDgen has its own parser/scanner built

using FLEX and BISON, successors of
LEX and YACC. It also includes its own

printer utilities. As such, CSDgen is a

self-sufficient component which can be

executed from the user interface or the

command line without the commercial

components. When changes are made to

the Ada PDL or source code, the entire

file must be reparsed to produce an

updated CSD. A CSD editor, which will

provide for dynamic incremental

modification of the CSD, is currently in

the planning stages.

GRASP/Ada [

r
I User Interface(x)

i CSDgen

I
i
I
I
l
i

f. 1

i oD.., i
k ,,.J

I
J

I
l
I
i
l

I GRASPIib IUN_n_sram

I I
murce code 1_8phkal reps

Figure 6. GRASP/Ada System Block Diagram.

The object diagram generation component, ODgen, is in the analysis phase and has

been implemented as a separate preliminary prototype. The dashed lines indicate future

integration. The feasibility of automatic diagram layout remains under investigation. Beyond

automatic diagram layout, several design alternatives have been identified. The major

alternatives include the decision of whether to attempt to integrate GRASP/Aria directly with

commercial components, namely (1) the Verdix Ada development system WADS) and

DIANA interface for extraction of diagram information and (2) IDE's Software through

Pictures, Ada Development Environment GDE/StP/ADE) for the display of the object

diagrams.

The GRASP/Ada library component, GRASPlib, allows for coordination of all

generated items with their associated source code. The current file organization uses standard

UNIX directory conventions as well as default naming conventions. For example, all Ada

source files end in .a, the corresponding CSD files end in .a.csd, and the corresponding print

files end in .a.csd.ps. In the present prototype, library complexity has been keep to a

minimum by relying on the UNIX directory organization. Its purpose is to facilitate

navigation among the diagrams and the production of sets of diagrams.

9

. + 4.0 User Interface

B

[]

U

GRASP/Ada user interface was developed using the X Window System, Version 11

Release 4 (XllR4). The X Window System, or simply X, meets the GRASP/Aria user

interface requirements of an industry-standard window based environment which supports

portable graphical user interfaces for application software. Some of the key features which

make X attractive for this application are its availability on a wide variety of platforms,

unique device independent architecture, adaptability to various user interface styles, support

from a consortium of major hardware and software vendors, and low acquisition cost. With

its unique device independent architecture, X allows programs to display windows on any

hardware that supports the X Protocol. X does not define any particular user interface style

or policy, but provides mechanisms to support many various interface styles.

The specifications and figures that follow arc intended to define the look and feel of

the GRASP/Ada User Interfaceas well as indicate much of the current and planned

functionalityof the CSD generator. The Man Page provides additionalinformation.

4.1 System Window

The System window, shown in Figure 7, provides the user with the overall

organization and structure of the GRASP/Ada tool. Option buttons include: General and

Control Structure Diagram. These are briefly described below. A future button is planned

for Object Diagram.

+._.: .+:_<m:<.,,:+>:<+,x_:+.,:t-.'-:.:-:-:-:+,,:+:.:+:.x< _<+:+x-:-_<<+-:m.,.:<<_:.-:<-+++:.:_:.: +:.+x:_.:+ x-:-:_ _.:-:+ :-:-,,:m>:..,.,:-:-:+:<-:<<+:+:._.-:::-+-::.:+.'.:.:._ :':!_._,..,._:_ :-x ,-:._.:.:.:. :.:.:<_-,z

" _ - - ._ " " _"+ "" ++_": x':k "_." 'f 'x::p'_ +_ +_k:"_ " '_.q,._- _ " " "X_'_x_ ,'< " "_

• :.::_:!.'.':_:i:i:.::i:-:_:i:+_.::i:_:i:_?_._::_i::_._+:i.:.::_!:!:_<..``_:.``_:i:._:_:_:i:i:i:_i._:_i:_:!:_:i:::_:_i:._i_i:._i_:._.+.:_:..<._:_!:i.`.`:_:i:i:i_i_:!.`..:..q:_:_._:._General lConU'ol Structure D1a_ram[_+_`_+_`_+_`_+_m_``+``_i_

._`...`_._.i_.i_+_`..`_.i_i+_G`_i_i_i_`_+_+_`_._._i_!?i.i_._i_?_i_i._ii._!.i_ii_!_!ii.i_i!_+_.:+,:+.-:-,+i_iiii_iiii!_i_i_iiiiiii_ii,..-_i_i+i

•:.::_<-:<<-- -._:.:+×-.-:-->:- +.,:.:+.-:: - -::+_:: :.. : >.-- • - - ._..,+.-...,x->::+.,,p.:+.,:-;::-:<. ,'.;:_,<__.'.':-'.:_.'.'+.'::"._,_:.':_.'.:."-':_-:_:-:i:_.'-':!:."::!:.".'.':_:_.:__:_:_ ___: _-'.'::'.'.'-_:-:-:':_!_ _:'_:-:_::'._ :."-_:_:?::':_:':_.i__:'.:.:.'._,

ii+ _+t-__i+:_i__!__ +'__,_i_-_!!_ __i_!__-":'.': _:_!_!_!_;_'.':i_!_5+'__ +.::_'+_'::_++__-P+i_ i_::.+i___+-"_i_i__:A+'i!_5+_:"_':_.:.,"."+
::: :::_.+::::::::::::::_:• +:+ -:: ..: ".. -::: - .+.:::_:::::_..+.::::...,.::

:.-++:+++++++..+,-++++++,:++-:+++_•_+++_+_+_++_+_+_+++++`_++++++++++_++++++_`++++_`++++++_+++_+_++_+++.+++++`..++++++_++++_+++++_++
:: -_ ::: :: : --.:::::::..:+ .::::::: :,:.: .. : ============================

q.._ _....._+....+..,¢._._.+.+_........++::.:+++...,z<++<.,-_.._..,:.:+_w..,. e.b,........ _j.:.:+:¢,:.......:.:,.._.,.....,....,_ m._..........+._+_ +.t_+¢...,.:_++_.',_....-:-¢..+b..:+,_..._

-_._-/:_::-::::::.: _/_ :-:::. :.: :.:+: :: .+ "._-. ,., .:.:+:.:.::::_-:.:.:...::::.:::::.:_.<`:<.:_<':`:_::_.:.'_:_:.:_:_:<.:<<_:_.:_:_:_:::::::::_.+_:::::.:_:_::::.............+...,+.+.++,...........................+..........
"%'.'::".'&":::_: :: <: _"+::':':::_---:':':-+"_"-::_::: :_._:::'_: _": "<.:':"-':::::::"<::':"<_'+'::-"!_::' :_"-".:::-l :-:::"• ":<:::!:-:::-.'r<::+'-:-::::: :::: :.'+.-.+:._:-'.:::::::-:':.+__.'.':.:::.'.-':-'..'._:':.-.'_::_-'.'_::_: :_:'.+.':_:::::!:.+.i:i:i:3".'-'::?._: ,,'!_:::-'.':YY.'-'.':!_:_i:-: :-._:_

Figure 7. GRASP/Ada System Window.

10

N

B

m

m

General - provides for selection of a printer access to the user manual (see Figure 8).

Control Structure Diagram - allows the user to open one or more CSD windows,
close all CSD windows that are currently open, and generate CSDs in a batch mode

(see Figure 9). In addition, a list of all CSD windows currently open is presented to
the user.

Since GRASP/Ada is expected to be used to process and analyze large existing
Ada software systems consisting of perhaps hundreds of Fries, the option to generate

a set of CSDs in. batch mode is particularly useful. Generating a set of CSDs is

facilitated by entering *.a or some other wildcard with a conventional source file
extension, for the file name. A CSD generation summary window displays the

progress of the generation by listing each file as it is being processed and any

resulting error messages. The summary concludes with number of files processed and
the number of errors encountered. The default for each CSD file name is the source

file name with .esd appended. If an error is encountered, an extension of.err is used.
As the CSDs are generated, the GRASP library is updated, which currently consists

of populating a specified directory with file images of the CSDs. Generating a set of
CSDs can be considered a user interface requirement rather than strictly a CSD

generator requirement.

"._:::._ ::f'":" ,.-:::: -::::., ":5 ...: ::::" ':::" " =================================

• _:._.-.':_:_:!:!.:.: ,..:.':.:::::::_..-,-:-:..,:.- <.,x.._..-...+:.:-_,_--'.::-:_.%:_::::::-:-:-:-:.:.:,:..-x:_::::::::._:

- _.:_---.. :::_:::::::::: i:_:x:S-:-:.:-::.'::'¢::._::.x-×.:•:-._::._.,::._.':-':-_.:::_.'.._:_i,_:_i:._.:-:-:-: -::.',_:°:-:°x.Y:.

_._o:.:-.'-:.:-:_ ,+x_-_:::_:.'_::::¢°>'+ x_::e:,:.:., . ¥: "'- .. .°:o:-:o>:x

Figure 8. General Options.

::S:::i"::-_.:_ .:!

_i$.-'.'#_t..................................,..,._.-'."

.'-?,_:_,_:::,..."_"-" .,,•. :..:..... ===============================
": !: _'_i_'. i: '::::::-_:_::_:_'_:-_::::i:--_ _ _ ::::::::.<::,Y_._.':g._:::: ::_

!,'_'__._%-':.:,:.:',:._,__,::_?:_ _:_:'i?:--._:::__x_':':,_:'__!

_ . - _:!_:.:i:::::_:::_::i:i:::i#_:i:.::.:i:.:i:!:.:i:_:_:::::::::_°.<:::::]::_:._._:

.-... -.. -.:_.._:-:°:.._:-:.:_-s:o._:o:_.:-:,.'_._:-:-:°:o._:x:

Figure 9. CSD Options.

4.2 Control Structure Diagram Window

The CSD window, shown in Figure 10

with file options displayed, provides the user
with capabilities for generating and viewing a

CSD for an Ada PDL or source f'rie. Multiple

CSD windows may be opened to access
several CSD Fries at once. CSD file names

and their associated directory paths are
selected under the File option and displayed at

the top of each window. Figure 11 shows a
CSD window after a procedure provided by

Lind

7,enenlte CSD

Save

.._,v_asAdL.

Prim...

Figure 10.

-:::-:_i:3_:.".i:i:_:-:i:i:-:_?.._."-._?.::._3-:?-_F i_ :'-?ak:":'._!:_?.i:i::'._:i:i::'-3i:3_3?.i_:_:-x.'-i:?-:'._.__:'.?-_i:-::x_

CSD Window File Options.

11

L_

= J

B

f_

B

NASA has been loaded and the CSD generated by clicking Regenerate CSD on the menu

selection bar or by clicking Generate CSD under File options. In the current version of

GRASP/Ada, generation of the CSD is done on a file-level basis where each file contains one

or more units. When changes are made to the source code, the entire CSD for the file

involved is regenerated. Future versions of GRASPIAda will address incremental

regeneration of the CSD in conjunction with editing capabilities in the CSD window.

{File{View Find Misc{Ada{!_ii

procedure RCS_HIP is

-- subtype TEMP_N3ETS_TYPE is INTEGER range 1., 16;
-- type thruster_type is array (1 .. 15) of ON_OR_OFF;
-- thrusters: thruster_type :- (others-> OFF);

thrusters: tuo_byte_var :- (others=>false);
thruster_data: arr_64;
bc_interrupt_status: unsigned__ord :- _6#75#;

function convert_t_o_byte_var is ne= UNCHECKED_CONVERSION(SOURCE->
TWO_BYTE_VAR, TARGET->UNSIGNED_WORD);

begin

-- OUTPUT HIP --

-- OUTPUT ATTITUDE JET COMMANDS --

for INDEX in RCS_ON'range loop
JET_CMND(IHDEX) :- RCS_ON(INDEX);

_ RCS_ON(INDEX) - ON thenTHRUSTERS(INDEX - I) :- true;

THRUSTERS(INDEX - I) :- false;

end if;
end loop;

-- OUTPUT THRUSTER DATA VIA 1553B --

-- 1553B thruster data message --
thruster_data(1) :- 16#9999#;
thruster_data(2) := t6#9606#;
thruster_data(3) :- convert_tmo_byte_var(thrusters);

Figure 11. CSD Window with Procedure Provided by NASA After CSD Generation.

The CSD window Options

File - allows the user to select from numerous options including:

Load - loads a CSD file. A window is presented that allows the user to

navigate among directories and select a file.

12

W

W

Generate CSD - generates a CSD from source code or to regenerate a CSD
after modification. When the CSD window is opened and loaded with a

source file without a .csd extension, a separate CSD window is automatically

opened to display the CSD when it is generated. Note that CSD graphics

characters, if any, are filtered prior to the parse or reparse. Currently, this

option is the same as Regenerate CSD on the menu selection bar of the CSD

window (described below).

Compile - is a future option to allow an Ada compiler to be called from the
CSD window. The alternative is to have GRASP/Ada called as an editor from

an Ada development tool such as Sun's AdaVision.

Save - saves the CSD file with the same name as was loaded.

Save as ... - saves the CSD file with a new name.

Save as Ada - filters the CSD characters from the CSD file and writes to a

file with a .a extension.

Print - presents a window which allows the user to select various print

options such as point size, page numbers, and header, and then generates a

PostScript file (.ps) from the .csd file and sends it to the selected printer.

Quit - closes the CSD window.

View - currently allows the user to select one of several window fonts (also see

option AA AA below). Future options may include the following.

Enable Collapse {Disable Collapse} - will allow the user to collapse the CSD
based on its control constructs.

Suppress CSD {Show CSD} - will allow the user to suppress or hide the CSD

giving the appearance of prettyprinted code.

Open TOC Window - will access the GRASP library and displays a table of

contents based on Ada scoping.

Open Index Window - will access the GRASP library and display an index

of units in alphabetical order.

Find - (not activated) allows the user to perform search and replace operations. A

Search window can be opened by pressing Ctrl-S.

Misc - allows the user to show or hide The CSD character panel. With the panel
visible, CSD characters can be inserted directly into the current window, primarily for

the purpose of experimentation.

13

U
i

m

Fro1

B

!
W

B

1

Ada - displays Ada control constructs
and enables the user to insert them

directly into the current window at the

location of the curser (see Figure 12).

A syntactically correct program can be

constructed quickly using this option.

Figure 13 shows a program structure

resulting from four clicks on the Ada

constructs: procedure body, while

loop, iflthen/else, and for loop. The

template placeholders can be modified

or replaced as necessary.

AA AA - allows the user to increase

or decrease the font size for the

current window, thus shrinking or

expanding the overall size of the CSD.

_i_i_ _ _"i'._!_! _-'.:-__ili'_ii::::._::_i_:-_:-Ji:::_:i::_:.<:_i:i_:_:_:._:i:i_i.".:-.:::-__','.:_'_-i-_ _ii_i_,_-, i__:::....... _"" _ii_ii_...i!i_i__'&:::::::__i:::_::::i_::__...:-_-.'i_i_.{_i_.:_:!i

No _¢_t,_x ov'v'o_ dle_o_a_l.

Ho _t,_x o¢'v'_ _.

p_ _ Is

bogln
-- rt_ll"

i,_l'ttle (_Ot_ITIOH loop
_-- nulla

II-- nu_Za
f Uandloop-

[,a,_

• f_ _dl."
_--1_t_m EROICE ffi>

"i _ _;

ml
m
_w

{_i_ _

Figure 13. CSD Window with Program Structure Resulting from Clicking on Four Ada
Constructs: procedure body, while loop, if�then�else, and for loop.

14

= :

ItW

w

L

Regenerate CSD - allows the user to quickly regenerate a CSD after making changes.

Currently, this option is the same as Generate CSD on the File submenu. See above

for details.

Quiet mode / Verify mode - allows the user to toggle between to modes of

regeneration. Quiet mode assumes that the existing ftles should be overwritten during

generation or regeneration, and Verify mode queries the user before continuing.

4.3 User Interface Summary

The User Interface is expected to continue to evolve, especially as new functionality

is added. In particular, implementation based on alternate widget sets is under consideration

as well as utilization with other window manager. The requirements definition and design

of the current version were done in a learning mode under a schedule that required an

operational prototype to be implemented quickly. As a result, many of the features, such as

placement of options, are expected to be streamlined considerably. However, the current

prototype is suitable for limited practical application, and information collected from current

users is expected to have a positive effect on the overall evolution of the prototype.

m
mu

m

m

m
W

E
m

m

15

5.0 Control Structure Diagram Generator

The GRASP/Ada control structure diagram generator (CSDgen) is described in this

section from a technical and developmental perspective. A more complete history and

rationale for the development of the CSD is contained in [CRO90a, CRO90b]. The graphical

constructs produced by CSDgen are summarized in Figure 5 (Section 2.0). Examples of the

CSD are presented in conjunction with the User Interface in Section 4.0.

5.1 Generating the CSD

The primary function of CSDgen is to produce a CSD for a corresponding Ada source
or PDL file. Although a complete parse is done during CSD generation, CSDgen assumes

the Ada source code has been previously compiled and thus is syntactically correct.

Currently, little error recovery is attempted when a syntax error is encountered. The diagram

is simply generated down to the point of the error. In the case of Ada PDL, non-Aria

statements must be valid Ada identifiers so that they are treated like procedure calls. For

example, the PDL for "search array for largest element" could be represented as

Search_array_for _largest_element.

The current CSDgen prototype builds the diagram directly during the parse by
inserting CSD graphics characters into a file along with text. To increase efficiency and
improve extensibility, future versions of the CSDgen prototype may use a more abstract

intermediate representation.

5.2 Displaying the CSD - Screen and Printer

Basic display capabilities to the screen and printer were implemented during Phase
2. Screen display is facilitated by sending the CSD file to a CSD window opened under an
X Window manager. Printing is accomplished by converting the CSD file to a PostScript file

and then sending it to a printer. Moving to a more abstract intermediate representation in
future versions would necessitate the development of a new set of display routines which will

be X Window System based.

CSD Screen Fonts. The default CSD screen font is a bitmap 13 point Courier to

which the CSD graphic characters have been added. The font was defined as a bitmap

distribution font (BDF) then converted to SNF format required by the X Window System.

Four additional screen fonts ranging from 5 to 18 point are user selectable.

CSD Printer Fonts. CSD Printer fonts were initially developed for the HP LaserJet

series. These were then implemented as PostScript type 3 fonts and all subsequent font

development has been directed towards the PostScript font. The PostScript font provides the

most flexibility since its size is user selectable from 1 to 300 points.

16

=

L_

m

B

f_

5.3 Displaying the CSD - Future Considerations

Layout/Spacing. The general layout of the CSD is highly structured by design.
However, the user should have control over such attributes as horizontal and vertical spacing
and the optional use of some diagramming symbols. In the current Version 3 CSDgen
prototype, horizontal and vertical spacing are not user selectable. They are a part of the CSD

fie generation and are defaulted to single spacing with 80 characters per line. In order to

change these, e.g., from single to double spacing, the CSD file would have to be regenerated.
In future versions of the prototype, these options are expected to be handled by the new

display routines and, as such, can be modified dynamically without regenerating the CSD file.

Vertical spacing options will include single, double, and triple spacing (default is

single). Margins will be roughly controlled by the character line length selected, either 80
or 132 characters per line (default is 80). Indentation of the CSD constructs has been a
constant three blank characters. Support for variable margins and indentation is being

investigated in conjunction with the new display routines. In addition, several display options
involving CSD graphical constructs are under consideration. For example, the boxes drawn
around procedure and task entry calls may be optionally suppressed to make the diagram

more compact.

Collapsing the CSD. The CSD window should provide the user with the capability
to collapse the CSD based on all control constructs as well as complete diagram entities (e.g.,
procedures, functions, tasks and packages). This capability directly combines the ideas of
chunking with control flow which are major aids to comprehension of software. An
architectural CSD (ArchCSD) [DAV90] can be facilitated by collapsing the CSD based on

procedure, function, and task entry calls, and the control constructs that directly affect these
calls. In future versions of the prototype, the ArchCSD will be generated by the display

routines from the single intermediate representation of the CSD.

Color. Although general color options such as background and foreground may be
selected via the X Windows system, color options within a specific diagram were only briefly

investigated for both the screen and printer. It was decided that these will not be pursued in
the Version 3 prototype.

Printing An Entire Set of CSDs. Printing an entire set of CSDs in an organized and

efficient manner is an important capability when considering the typically large size of Ada
software systems. A book format is under consideration which would include a table of

contents and/or index. In the event GRASP/Ada is fully integrated with IDE/StP/ADE, the

StP Document Preparation System may be utilized for this function.

5.4 Incremental Changes to the CSD

In the present prototype, there is no capability for incrementally modifying the CSD.

When the CSD or source code is modified in the CSD window, the CSD must be regenerated.

While this has been sufficient for prototyping, especially for small programs, editing

capabilities with incremental modification of the CSD are desirable in an operational setting.

17

w

rt_l¢

5.5 Internal Representation of the CSD - Alternatives

Several alternatives were considered for the internal representation of the CSD in the

Version 3 prototype. Each has its own merits with respect to processing and storage

efficiency and is briefly described below. These alternatives remain under consideration for
future versions.

Single ASCH File with CSD Characters and Text Combined. This is the most

direct approach and is currently used in the Version 3 prototype. The primary advantage of

this approach is that combining the CSD characters with text in a single file eliminates the

need for elaborate transformation and thus enables the rapid implementation of prototypes as

was the case in the previous phases of this project. The major disadvantages of this approach

are that it does not lend itself to incremental changes during editing and the CSD characters

have to be filtered if the user wants to regenerate the CSD or send the file to a compiler.

Separate ASCH Files for CSD Characters and Text. In this approach, the file

containing the CSD characters along with placement information would be "merged" with the

prettyprinted source f'de. The primary advantage of the this approach is that the CSD

characters would not have to be stripped out if the user wants to send the f'de to a compiler.

The major disadvantage of this approach is that coordinating the two files would add

complexity to generation and editing routines with little or no benefit. As a result, this

approach would be more difficult to implement than the single file approach and not provide

the advantages of the next alternative.

Single ASCH File Without Hard-coded CSD Characters. This approach represents

a compromise between the previous two. While it uses a single file, only "begin construct"

and "end construct" codes are actually required for each CSD graphical construct in the CSD

file rather than all CSD graphics characters that compose the diagram. In particular, no

continuation characters would be included in the file. These would be generated by the

screen display and print routines as required. The advantages of this approach would be most

beneficial in an editing mode since the diagram could grow and shrink automatically as

additional text/source code is inserted into the diagram. The extent of required modifications
to text edit windows must be considered with this alternative.

Direct Generation From DIANA Net. If tight coupling and integration with a

commercial Ada development system such as Verdix VADS is desired, then direct generation

of the CSD from the DIANA net produced as a result of compilation could be performed.

This would require a layer of software which traverses the DIANA net and calls the

appropriate CSD primitives as control nodes are encountered. This approach would eliminate

the possibility of directly editing the CSD since the DIANA interface does not support

modifying the net, only reading it.

5.6 Navigating among CSDs and Object Diagrams. Future Considerations

A GRASP library is required to provide the overall organization of the generated

diagrams. The current f'de organization uses standard UNIX directory conventions as well

as default naming conventions. For example, all Ada source files end in .a or .aria, the

18

v -

_.I

w

m

w

m

corresponding CSD files end in .a.csd, and the corresponding print files end in .a.csd.ps. In

the present prototype, library complexity has been keep to a minimum by relying on the

UNIX directory organization. In future versions, a GRASP library entry will be generated

for each procedure, function, package, task, task entry, and label. The library entry will

contain minimally the following fields.

identifier - note: unique key should be composed of the identifier + scoping.

scoping/visibility

type (procedure, function, etc.)

parameter list - to aid in overload resolution.

source file (file name, line number) - note: the page number can be computed from

the linenumber.

CSD file (f'de name, line number)

OD file (fde name)

"Referenced by" list

"References to" list

Alternatives for generation and updating of the library entries include the following.

(I) During CSD generation,the libraryentry is establishedand the entry is

updated on subsequent CSD generations.

(2) During the processing of DIANA nets.

Alternativesfor implementing the GRASP libraryinclude (I) developing an Ada

package or equivalentC module which iscalledby the CSD generation routinesduring the

parse of the Ada source,(2) using the VADS librarysystem along with DIANA, and (3)

using the StP TROLI.AISE relationaldatabase system. Of thcsc alternatives,the firstone

may be the most directapproach sinceitwould be the easiesttocontrol.The VADS and StP

libraryapproaches may be more usefulwith the additionof objectdiagram generation and

alsowith futureintegrationof GRASP with commercial CASE tools.

19

w

_ T

F_

w

w

=__

W

m

6.0 Evaluation of the Control Structure Diagram and GRASP/Ada

An important aspect of any research project is the evaluation of the results. In the

GRASP/Aria project the two primary results were (1) the development of the Control

Structure Diagram (CSD) as a new algorithmic level graphical representation for Ada

software and (2) the development of a prototype that automatically generates the CSD from

existing Aria PDL or source code. Formal statistically-based controlled experiments dealing

with the comprehensibility of graphical representations of software are difficult to design and

conduct. Similar difficulties are encountered when attempting design controlled experiments

to evaluate CASE tools with respect to improvements in productivity that result from their

use. The primary difficulty arises from the learning curve that users/subjects must overcome.

For example, a year or more may be required to become proficient enough with a software

tool to actually realize gains in productivity. Thus, it may be difficult to compare two CASE

tools in a "controlled" experiment without introducing bias based on familiarity or in many

cases the lack of familiarity. As a result, most evaluation of CASE tools is based on

preference surveys in which the user/subject is asked to make mental assessments or

comparisons of various aspects of the tool(s) under study.

This section describes the subjects that participated in the evaluation of the CSD and

GRASP/Aria, the preference survey instrument that was developed and administered, and the

results of the analysis of the data collected.

6.1 The Subjects

The evaluation instrument was administered to 33 junior/senior computer science and

engineering students at Auburn University in the course CSE 422 - Introduction to Software

Engineering, during the Fall 1992 quarter. These students all had experience with

FORTRAN, Pascal, and C in previous courses. None had formal training in Ada for which

the GRASP/Ada tool was designed. Since participation in the evaluation was optional, five

bonus points to be added to the fmal exam score were offered as an incentive. All students

present took part in the evaluation.

Each of the graphical representations included in the first part of the evaluation

instrument was presented briefly in class, and exercises were assigned involving the Nassi-

Slmeiderman diagram CNS) and the control structure diagram (CSD). Most students were

familiar with the flowchart (FC) from prior classes.

The GRASP/Aria prototype was presented during a laboratory session and used in

conjunction with the commercial CASE tool, Software through Pictures (SO), which was the

primary focus of the CSE 422 lab.

6.2 The Evaluation Instrument

The evaluation instrument was divided into two parts: (1) the evaluation of graphical

representations of algorithms and (2) the evaluation of GRASP/Ada (see Appendix C). In

the first part, five graphical representations were compared: the ANSI flowchart (FC), the

Nassi-Shneiderman diagram (hiS), the Wamier-Orr diagram (WO), the action diagram (AD),

and the control structure diagram (CSD). The first three items solicited background

20

D

information with respect to familiarity. In the next eleven items, subjects were asked to

compare the diagrams with respect to (a) how well each represented sequence, selection, and
iteration, Co) overall readability, (c) improvement in readability as an extension to pseudo-
code, (d) ease of coding from, (e) ease of manual use, (f) overall preference if drawn
manually, (g) overall economy, (h) overall preference with equivalent automated support, and
f'mally (h) overall preference all assumptions aside. These eleven items are described in more

detail blow in the discussion of results. The first part of the instrument concluded with an

open ended question soliciting suggestions on how to improve any of the diagrams compared.
The second part of the evaluation instrument was directed specifically at the

GRASP/Aria prototype. Questions were designed to solicit information regarding the User
Interface, major problems encountered, modifications/enhancements desired, and the level of
coverage provided for Ada during the presentation of GRASP/Ada.

6.3 The Evaluation Results

An item analysis was performed on the data collected on the first part of the

evaluation instrument with the exception of the three background items at the beginning and

the last item which asked for suggested improvements to the diagrams. The results are
presented below followed by a general summary of the responses from the second part.

6.3.1 Item Analysis of Comparison of Graphical Representations

An item analysis was performed on eleven items in the first part of the evaluation.
The subjects were given the following instructions:

Based on the experience you have gained by using these diagramming tools to

represent algorithms, you are asked to assign a rating to each of the diagrams with

respect to a specific comparison among the diagrams. You may assign the same

rating to more than one diagram for a given comparison. Select your ratings from the
following scale and enter them as indicated below.

5 - best / most / first choice
4-

3 - moderate
2-

1 - worst / least / last choice

For eac__.h.hof the eleven items below, the subjects used the rating scale above to complete the

following.

FC NS we AD CSD

The eleven items were:

1. Compare the diagrams with respect to how well each shows sequence.

21

w

F_

w

L_

w

r_

w

2. Compare the diagrams with respect to how well each shows selection.

3. Compare the diagrams with respect to how well each shows iteration.

. Compare these diagrams with respect to overall readability (consider reading

someone else's code).

. Each of these tools can be used with informal pseudocode as opposed to actual

statements in a programming language and, as such, can be thought of as a

graphical extension to pseudocode (with possibly some spatial rearrangemen0.

Rate the diagrams on the extent to which they increase readability over non-

graphical pseudocode.

. Suppose as a programmer you are #oven a design specification in which the

program logic has been documented using one of the graphical representations

below. Compare the diagrams with respect to which would best facilitate your

task of coding from the design specification.

. Compare the diagrams with respect to ease of manual use; consider the initial

drawing and subsequent modifications.

. Assuming you have to manually draw the diagrams (in the sense that they are

no_._tautomatically generated), indicate your overall preference for each

diagram where: 5 - f'wst choice, 1 - last choice.

. Compare the diagrams with respect to their overall economy (i.e., increases

in comprehension versus effort to draw them manually).

10. Assuming you have equivalent automated support to draw each of the

diagrams in the sense that the diagrams are automatically generated either by

selecting constructs from a menu or by recognizing key words in the code,

indicate your overall preference for each diagram where: 5 - first choice,..

., 1 - last choice.

11. All assumptions aside, indicate your overall preference for each diagram

where: 5 - first choice ,1 - last choice.

The results of the item analysis for these eleven items are contained in the eight tables

below. Since their contents is relatively self-explanatory, only a brief interpretation is
included after each table.

22

i •

_7

Table 1. ITEM ANALYSIS FOR GRAPHICAL REPRESENTATIONS

ITEM# N:Items FC NS wO AD CSD

1. SEQ 33 3.21 3.64 2.64 2.32 3.94
2. SEL 33 3.52 4.06 2.46 2.05 3.64

3. ITR 33 3.45 3.48 2.58 2.14 3.91

4. GEN READ 33 3.03 3.38 2.67 2.10 4.24

5, EXT P-COD 33 2.85 3.76 2.38 2.48 3.94

6. CODE-FROM 33 2,82 3,53 2,60 2.14 4,31

7. MANUAL 33 3.09 3.16 2.61 2.38 3.91

8. PREF/MANL 33 3.00 3.30 2.42 2.16 4.15

9. ECONOMY 33 2.70 3.27 2.52 2.00 4.52

i0. PREF/AUTO 33 3.03 3.52 2.36 2.09 4.55

ii. PREF/GE_ 33 3.00 3.33 2.54 1.96 4.55

ITEM AVG 363 3.06 3.49 2.52 2.16 4.15

above are the averages ofThe results in the table the 1 to 5 ratings each of the graphical

representations received from the subjects for the eleven items. The results clearly indicate

the overall preference for the CSD. Item 5 is of particular interest in that it attempts to

determine perceived improvements in readability over non-graphical pseudo-code.

Table 2. ITEM RESPONSE FREQUENCY

ITEM# N:items FC NS WO AD CSD

i. SEQ 33 33 33 25 22 33
2. SEL 33 33 33 24 21 33

3. ITR 33 33 33 24 21 33
- - 4. GEN READ 33 33 32 24 20 33

m. 5. EXT P-COD 33 33 33 24 21 33
6. CODE-FROM 33 33 32 25 22 32

7. MANUAL 33 33 32 23 24 33

8. PREF/MANL 33 33 33 26 25 33

9. ECONOMY 33 33 33 25 24 33

I0. PREF/AUTO 33 33 33 25 23 33

11. PREF/GEN 33 33 33 26 25 33

w.-,

The table above was included to identify those items and graphical representations where

subjects left the response blank. A blank indicated the subject was unfamiliar with the

notation or particular construct. Averages were computed on the basis of only those items

completod.

Table 3. PERCENTAGE SCORE FOR GRAPHICAL REPRESENTATIONS

ITEM# N:items FC NS WO AD CSD

33 64.24 72.73 52.80 46.36 78.79

33 70.30 81.21 49.17 40.95 72.73

33 69.09 69.70 51.67 42.86 78.18

33 60.61 67.50 53.33 42.00 84.85

33 56.97 75.15 47.50 49.52 78.79

33 56.36 70.62 52.00 42.73 86.25

33 61.82 63.12 52.17 47,50 78.18

33 60.00 66.06 48.46 43.20 83.03

33 53.94 65.45 50.40 40.00 90.30

33 60.61 70.30 47.20 41.74 90.91

33 60.00 66.67 50.77 39.20 90.91

i. SEQ

2 SEL

3 ITR
4 GEN READ

5 EXT P-COD

6 CODE-FROM

7 MANUAL

8 PREF/MANL
9 ECONOMY

I0. PREF/AUTO

ii. PREF/GEN

ITEM AVG 363 6i.27 69.89 50.48 43,23 82.98

The table above shows the item averages from Table 1 convened to percentages to provide

an additional perspective for comparison. In particular, the differences in percentages among

the responses are shown the tables that follow.

23

°

L

= =

=

w

U

i

w

w

w

ITEM#

1 SEQ
2 SEL

3 ITR

4 GEN READ

5 EXT P-COD

6 CODE-FROM
7 MANUAL

8 PREF/MANL
9 ECONOMY

10. PREF/AUTO

11. PREF/GEN

Table 4. PERCENTAGE SCORE DIFFERENCE - CSD Compared to Others

N:items FC NS WO AID CSD

33 14.55 6.06 25.99 32.42

33 2.42 -8.48 23.56 31.77

33 9.09 8.48 26.52 35.32

33 24.24 17.35 31.52 42.85

33 21.82 3.64 31.29 29.26

33 29.89 15.62 34.25 43.52

33 16.36 15.06 26.01 30.68
33 23.03 16.97 34.57 39.83

33 36.36 24.85 39.90 50.30
33 30.30 20.61 43.71 49.17

33 30.91 24.24 40.14 51.71

ITEM AVG 363 21.72 13.09 32.50 39.76

The table above shows the difference between the control structure diagram (CSD) percentage

scores and each of the other percentage scores. Positive values indicate preference for the

CSD. Note that the NS selection construct was the only item for which the CSD construct

was not preferred on average.

Table 5. PERCENTAGE SCORE DIFFERENCE - AD Compared to Others

ITEM# N:items FC NS WO AD CSD

1 SEQ

2 SEL

3 ITR
4 GEN READ

5 EXT P-COD
6 CODE-FROM

7 MANUAL

8 PREF/MANL

9 ECONOMY

10. PREF/AUTO

ii. PREF/GEN

33 -17.88 -26.36 -6.44 -32.42

33 -29.35 -40.26 -8.21 -31.77

33 -26.23 -26.84 -8.81 -35.32

33 -18.61 -25.50 -11.33 -42.85

33 -7.45 -25.63 2.02 -29.26

33 -13.64 -27.90 -9.27 -43.52
33 -14.32 -15.62 -4.67 -30.68

33 -16.80 -22.86 -5.26 -39.83

33 -13.94 -25.45 -10.40 -50.30

33 -18.87 -28.56 -5.46 -49.17

33 -20.80 -27.47 -11.57 -51.71

363 -18.04 -26.66 -7.25 -39.76ITEM AVG

The tableabove shows thedifference

each of theotherpercentagescores.
AD.

betweentheactiondiagram(AD) percentagescoresand

Negativevaluesindicatea lackof preferenceforthe

Table 6.

ITEM# N :items

1 SEQ

2 SEL
3 ITR

4 GEN READ

5 EXT P-COD

6 CODE-FROM

7 MANUAL

8 PREF/MANL
9 ECONOMY

I0. PREFIAUTO

Ii. PREF/GEN

PERCENTAGE SCORE DIFFERENCE - WO Compared to Others

FC NS WO AD CSD

33 -11.44 -19.93 6.44 -25.99

33 -21.14 -32.05 8.21 -23.56

33 -17.42 -18.03 8.81 -26.52

33 -7.27 -14.17 11.33 -31.52
33 -9.47 -27.65 -2.02 -31.29

33 -4.36 -18.62 9.27 -34.25
33 -9.64 -10.95 4.67 -26.01

33 -11.54 -17.60 5.26 -34.57

33 -3.54 -15.05 10.40 -39.90

33 -13.41 -23.10 5.46 -43.71
33 -9.23 -15.90 11.57 -40.14

ITEM AVG 363 -10.79 -19.41 7.25 -32.50

The tableabove shows thedifferencebetween theWarnier-Orr(WO) percentagescoresand

each of theotherpercentagescores.Positivevaluesindicatepreferenceand negativevalues

indicatea lackofpreferencefortheWO.

' 24

ITEM#

i SEQ
2 SEL

3 ITR

4 GEN READ

5 EXT P-COD

6 CODE-FROM

7 MANUAL

8 PREF/MANL
9 ECONOMY

i0. PREF/AUTO
ii. PREF/GEN

Table 7. PERCENTAGE SCORE DIFFERENCE - NS Compared to Others

N:items FC NS WO AD CSD

33 8.48 19.93 26.36

33 10.91 32.05 40.26
33 0.61 18.03 26.84

33 6.89 14.17 25.50

33 18.18 27.65 25.63
33 14.26 18.62 27.90

33 1.31 10.95 15.62

33 6.06 17.60 22.86

33 11.52 15.05 25.45

33 9.70 23.10 28.56

33 6.67 15.90 27.47

-6 06

8 48

-8 48

-17 35

-3 64

-15 62

-15 06

-16 97
-24 85

-20 61

-24 24

ITEM AVG 363 8.62 19.41 26.66 -13.09

The table above shows the difference between the Nassi-Shneiderrnan diagram (hiS)

percentagescoresand each ofthe otherpercentagescores.Positivevaluesindicatepreference

for the NS and negative values indicatea lack of preference. Note thatthe NS selection

constructwas the only item for which the CSD constructwas not preferred.

Table 8. PERCENTAGE SCORE DIFFERENCE - FC Compared to Others

ITEM# N:items FC NS WO AID CSD

I. SEQ 33 -8.48 11.44 17.88 -14.55
2. SEL 33 -10.91 21.14 29.35 -2.42

3. ITR 33 -0.61 17.42 26.23 -9.09

4. GEN READ 33 -6.89 7.27 18.61 -24.24

5. EXT P-COD 33 -18.18 9.47 7.45 -21.82

6. CODE-FROM 33 -14.26 4.36 13.64 -29.89

7. MANUAL 33 -1.31 9.64 14.32 -16.36

8. PREF/MANL 33 -6.06 11.54 16.80 -23.03

9. ECONOMY 33 -11.52 3.54 13.94 -36.36

10. PREF/AUTO 33 -9.70 13.41 18.87 -30.30

11. PREF/GEN 33 -6.67 9.23 20.80 -30.91

ITEM AVG 363 -8.62 10.79 18.04 -21.72

The tableabove shows the differencebetween the ANSI Flowchart (FC) percentage scores

and each of the otherperccntagc scores. Positivevalues indicatepreference for the FC and

negative values indicatea lack of preference. Note thatthe FC was consistentlypreferred

over the WO and AD. However, the CSD and NS wcrc consistentlypreferredover the FC.

6.32 Summary of Responses For Evaluation of GRASPIAda

The second part of the evaluation instrument was specifically directed at GRASP/Ada.

The items arc prcsentcd below with a summary of the responses in italics.

1. Was the User Interface intuitive?

Most subjects felt comfortable with the User Interface after several sessions.

However, many expressed the desire for a User Manual.

2. What changes would you make to the User Interface?

Most subjects stated the User Interface was acceptable as is. Several expressed a

desire to have "stickable" subwindows from which options are selected. These were

25

u

L _

u

w ,

m

r

w

m

m

m

c_

not available through Athena widgets from which the User Interface was constructed.

3. What were the major problems you encountered when using GRASP/Ada.

As one might expect, a variety of responses were given for this item. Most were as

a result of several known bugs which have since been removed. Some simply

indicated improper use of the prototype and/or a lack of expertise in Ada. Again,

many expressed the desire for a User Manual.

4. Rank the following items in order of importance in the prototype. Note, some

of these items are available in the current version and others are under

consideration as modifications/enhancements. Also, feel free to comment on

each in the space provided. (1 - least important, 7 - most important)

The overall rank of the items is indicated.

a. 4.6_..99 Integration of CSD generation/editing capabilities with a CASE

tool such as StP to facilitate development of process pspecs

and/or module PDL.

b. 4.84 GRASP/Ada User's Manual.

c. 4.84 Error messages resulting from CSD generation.

d. 4.4....7.7 Integration of CSD editing/generation with automatic generation

of object diagrams to show software architectural design (i.e.,

the object diagrams indicate the dependencies among a set of

CSDs).

e. 2.8_...! Spatial options (line spacing, amount of indentation, etc.).

f. 4.2._.!2 Direct access to a compiler from the User Interface to facilitate

use of the CSD during implementation.

g. 5.1...99 Extension of the CSD editor and generator to handle other

languages such as C and Pascal.

Rate your knowledge of Ada.

excellent _ good _ moderate _ very little __ virtually none

1.7...._6 indicates knowledge of Ada was between virtually? none and very little.

How useful was the Ada template feature in the CSD Window in producing

5,

o

Ada/PDL CSDs?

extremely __ very __ moderately __ not very _ not useful

26

-.....

w

S_

=.___

w

m

u

3.5_...33 indicates usefulness of the Ada template was between moderately and

very useful.

What modifications/improvements should be made to this feature?

Many subjects indicated that additional Ada construct templates were needed.

Only control structures are included presently.

7. The time in class spent on Ada and/or AdaPDL

should have been increased. was about right. should have been

decreased.

2.64 indicates the class time spent on Ada was between about right and

should have been increased.

Comments? Some subjects indicated that the course (CSE 422) should have

a more formal emphasis on Ada. Other indicated an emphasis on Pascal or

C was preferred since prior required courses cover these languages.

. CSD editors and generators are planned for C and Pascal. If these tools were

available on the network, how useful would they be to you with respect to

improving the readability of your source code in future software development

projects?

C:

extremely _ very _ moderately _ not very _ not useful

4.09 indicates a CSD editor�generator for C would be between very and

extremely useful.

Pascal:

extremely _ very _ moderately _ not very _ not useful

indicates a CSD editorlgenerator for Pascal would be between moderately and

very useful.

27

h__

E_

w

r_

M

L--

i

7.0 Conclusions and Future Directions

The GRASP/Ada project has provided a strong foundation for the automatic generation

of graphical representations from existing Ada software. The current prototype provides the

capability for the user to generate the Control Structure Diagram (CSD) from Ada PDL or

source code in a reverse engineering mode with a level of flexibility suitable for practical

application. The prototype is being used in two software engineering courses at Auburn

University on student projects in conjunction with other CASE tools. The feedback provided

by the students has been very useful, especially with respect to the user interface.

An important issue for all software tools in general, and graphical representations in

particular, is evaluation. The prototype has been prepared for limited distribution

(GRASP/Ada Version 3.2) to facilitate evaluation. Although experience indicates that

empirical evaluation of graphical notations such as data flow diagrams, object diagrams,

structure charts, and flowgraphs is difficult, an evaluation of the CSD for Ada is planned.

However, prior to controlled experiments, an informal preference evaluation was conducted

to provide preliminary information on actual usage patterns for the CSD. Analysis indicated

a clear preference for the CSD over the other graphical notations for algorithms compared.

The CSD generation component of GRASP/Ada has been loosely integrated with

IDE's Software though Pictures to replace non-graphical process specifications (pspecs) for

data flow diagrams and module PDL for structure charts and object diagrams (see Appendix

B). In fact, the CSD becomes a natural detailed-level graphical extension for these system

• and architectural level diagrams. In this capacity, the CSD has the potential to replace

traditional non-graphical pspecs and PDL used in software design and textual source code

listings used in implementation, testing, and maintenance.

The primary impact of reverse engineering graphical representations will be improved

comprehension of software in the form of visual verification and validation (V & V). To

move the results of this research in the direction of visualizations to facilitate the processes

of V & V, numerous additional capabilities must be explored and developed. A set of

graphical representations that directly support V & V of software at the architectural and

system levels of abstraction must be formulated. For example, the Object Diagram generator

(ODgen) prototype described earlier is one the components of the GRASP/Ada project which

would address architectural and system levels of abstraction. This task must include an on-

going investigation of visualizations reported in the literature as currently in use or in the

experimental stages of research and development. In particular, specific applications of

visualizations to support V & V procedures must be investigated and classified. Prototype

software tools which generate visualizations at various levels of abstraction from source code

and PDL, as well as other intermediate representations, must be designed and implemented.

Graphically-oriented editors must provide capabilities for dynamic reconstruction of the

diagrams as changes are made to other diagrams at various levels. These graphical

representations should provide immediate visual feedback to the user in an incremental

fashion as individual structural and control constructs are completed.

The current prototype of the CSD generator, while only one of set of required

visualization tools, has clearly indicated the utility of the CSD. Future enhancements will

only increase its effectiveness as a tool for improving the comprehensibility of software.

28

REFERENCES

w

m

ADA83

AOY89

BAR84

CHI90

CRO88

CRO90a

CRO90b

CRO92

DAV90

MAR85

SCA89

SEL85

The Programming Language Ada Reference Manual. ANSI/MIL-STD- 1815A-

1983. (Approved 17 February 1983). In Lecture Notes in Computer Science,

Vol. 155. (G. Goos and J. Hartmanis, eds) Berlin : Springer-Verlag.

M. Aoyama, et.al., "Design Specification in Japan: Tree-Structured Charts,"

IEEE Software, Mar. 1989, 31-37.

J. G. P. Barnes, Programming in Ada, Second Edition, Addison-Wesley

Publishing Co., Menlo Park, CA, 1984.

E. J. Chikofsky and J. H. Cross, "Reverse Engineering and Design Recovery

- A Taxonomy," IEEE Software, Jan. 1990, 13-17.

J. H. Cross and S. V. Sheppard, "The Control Structure Diagram: An

Automated Graphical Representation For Software," Proceedings of the 21st

Hawaii International Conference on Systems Sciences (Kailui-Kona, HA, Jan.
5-8). IEEE Computer Society Press, Washington, D. C., 1988, Vol. 2, pp.
446-454.

J. H. Cross, K. I. Morrison, C. H. May, "Generation of Graphical

Representations From Source Code," Proceedings of the Southeast Regional

ACM Computer Science Conference, April 18-20, 1990, Greenville, South

Carolina, 54-62.

J. H. Cross, S. V. Sheppard and W. H. Carlisle, "Control Structure Diagrams

for Ada," Journal of Pascal, Ada, and Modula 2, Vol. 9, No. 5, Sep./Oct.
1990.

J. H. Cross, E. J. Chikofsky and C. H. May, "Reverse Engineering," Advances

in Computers, Vol. 35, 1992, in process.

R. A. Davis, "A Reverse Engineering Architectural Level Control Structure

Diagram," M.S. Thesis, Auburn University, December 14, 1990.

J. Martin and C. Mcclure, Diagramming Techniques for Analysts and

Programmers. Englewood Cliffs, NJ : Prentice-Hall, 1985.

D. A. Scanlan, "Structured Flowcharts Outperform Pseudocode: An

Experimental Comparison," IEEE Software, Sep. 1989, 28-36.

R. Selby, et. al., "A Comparison of Software Verification Techniques," NASA

Software Engineering Laboratory Series (SEL-85-001), Goddard Space Flight

Center, Greenbelt, Maryland, 1985.

29

w

t

g..

mal-

L _
H

w

L_,

m

SHN77

SHU88

STA85

TRI89

WAS89

B. Shneiderman, et. al., "Experimental Investlgafions of the Utility of Detailed

Flowcharts in Programming," Communications of the ACM, No. 20 (1977), pp.

373-381.

Nan C. Shu, Visual Programming, New York, NY, Van Norstrand Reinhold

Company, Inc., 1988.

T. Standish, "An Essay on Software Reuse," IEEE Transactions on Software

Engineering, SE-10 (9), 494-497, 1985.

L. L. Tripp, "A Survey of Graphical Notations for Program Design -An

Update," ACM Software Engineering Notes, Vol. 13, No. 4, 1989, 39-44.

A. I. Wasserman, P. A. Pircher and R. J. Muller, "An Object Oriented

Structured Design Method for Code Generation," ACM SIGSOFT Software

Engineering Notes, Vol. 14, No. 1, January 1989, 32-52.

3O

A*

B*

APPENDICES

Getting Started

Integrating GRASP/Ada with Software through Pictures (StP)

w

W

ene-

w

u

m

w

W

m

w

C* Evaluation Instrument

31

t ±

w

--7
u

Appendix A

m

H

M

GRASP/Ada

Getting Started

B

iw

A-0

t

L_

L_

w

m_

w

Getting Started

Getting Started assumes GRASP/Ada has been properly installed on your local UNIX

system. If this has not been done see the README.1NSTALL file included with the

GRASP/Ada software. The steps below describe required modifications to your .cshrc file

and the command that executes GRASP/Ada.

o An environment variable called GRASP_HOME (where the current version of GRASP

is installed) should be set, Contact the system administrator about the

GRASP_HOME directory details.

setenv GRASP_HOME

, The GRASP executable is located in $GRASP_HOME/bin directory. So

$GRASP_HOME/bin directory should be added to the path list. If path variable has

already been set, add the following line after setting the GRASP_HOME environment
variable.

set path = ($path $GRASP_HOME/bin)

3_ GRASP man pages are located in $GRASP_HOMEAnan. So $GRASP._HOME/man

should be added to the MANPATH environment variable. If MAN-PATH environment

variable has already been set, add the following line after setting the GRASP_HOME
environment variable.

setenv MANPATH ${MANPATH}:$GRASP_HOMEIman

4. Save the .cshrc file and type the following at the command prompt.

source .cshre

5. Type graspada & at the command prompt to execute GRASP in the background.

A-1

w

Appendix B

__._._._._._._._.E__

L--

m

--I

GRASP/Ada

m

Integrating GRASP/Ada

with Software through Pictures (StP)

==

w

i

U

W

!

m

B-0

Integrating GRASP/Ada
with Software through Pictures (StP)

L_

w

w

g_

Introduction

Software through Pictures (StP) is a commercially available CASE tool from

Interactive Development Environments, Inc. ODE). StP provides automated support for

software development methods which allow the user to build a comprehensive model of the

system. This system model helps ensures the integrity of the design before starting the

production of the code. In particular, StP can be used to build the graphical representations

such as data flow diagrams, structure charts, entity relationship diagrams, and object

diagrams. The information generated from the design is compiled into the underlying

database called Data Dictionary to ensure consistency across the entire project. Once the

design is complete, the system can be developed according to the model. StP includes a set

of editors for graphically modeling programs and the data used in the programs. Among

these graphical editors are the Data Flow Diagram Editor (DFE) and Structure Chart Editor

(SCE). GRASP/Ada can be used to generate a control structure diagram (CSD) from (or in

place of) process specifications (pspecs) in the DFE and module specifications (PDL) in the

SCE. Using CSDs for pspecs and PDL provides a natural graphical extension to data flow

diagrams and structure charts. The figure below shows a snapshot of the screen with a pspec

represented by a CSD.

Data Flow Diagram Editor

The Data Flow Diagram Editor (DFE) is an interactive graphical tool for drawing data

flow diagrams in support of the Structured Analysis method. Data flow diagrams provide a

view of the system from a functional perspective. The top level context diagram shows the

system's overall purpose and how it interacts with external objects. Lower level diagrams

show the system subdivided into components or processes using decomposition techniques.

The DFE models the data flow of a system by using symbols that represent processes, data

flows, data stores, and external data sources and sinks. The status of a process is represented

by the presence or absence of a status marker next to the index number. Ifs is undefined.

An undefined process is one that is neither decomposed nor has a pspec. All processes must

be defined before the diagram is entered into the Data Dictionary. If there is an asterisk (*)

next to the process index number, the process is decomposed. If a Pspec has been generated

for the process, a small p appears next to the process index.

GRASP/Ada can be used to generate CSDs from syntactically correct Ada programs

or Ada PDL. Since the Pspec editor of the DFE does not have the graphic capability, it can

be replaced by GRASP/Ada.

B-1

Structure Chart Editor

=7
r_

- ==

L

w

w

IN

U
M

The Structure Chart Editor (SCE) is an interactive graphical editor for drawing

structure charts. The purpose of the structure chart is to show the interconnections between

identifiable program modules by graphically representing the modules hierarchy and

indicating the data that is passed between the modules. Each module has an associated non-

graphical PDL module specification. As with the pspec above, GRASP/Ada can be used to

generate a CSD for each PDL spec by replacing the StP PDL editor with GRASP/Ada.

Integration Procedure

Before integrating GRASP/Ada with StP, the environment variables and path variables

required to execute GRASP/Ada as a stand alone tool should be set in .cshrc file. Tool

Information files are the principal means by which the user customizes StP to suit the needs
of individual user and environment.

Variables in the Tool Information file are used to customize the environment in which

StP runs, specify the commands StP executes when running, and create the look and feel of

the graphical editors. The Tool Information file is a ASCII text file, and the variables can

be changed by commenting them out, changing their values, or setting their values in another
file.

When StP is first invoked from the command line, the system uses routines in the

Tools Library to find the appropriate Tool Information file to read. First, the system looks
for an environment variable called Toollnfo defined in the user's .cshrc file. This variable

gives the complete pathname to the Tool Information file to be read. A ToolInfo variable

can have a value which is a number or a character string, the pathname for a file or directory,

or a command with optional parameters. For example, the variable that specifies the location

of the file used to set up the Main Menu may appear in the f'de as follows:

S TPM en u S pec=/u sr/l ocal/lib/S Tl_ne n u. spec

The appearance of the Main Menu and the tools and commands available through it are

controlled by certain ToolInfo variables and Main Menu Specification file.

The Main Menu Specification File. The main menu specification file determines
choices available in various areas of the Main Menu Window. It specifies the icons and

labels that can appear in these areas, and it determines what combinations of commands or

list of choices are available and how they are displayed.

Structure of the Specification File' The following excerptfrom STPmenu spec gives

the specification for CSD icon

/GRASP
label [GRASP]
image { \

/* Format_version=l, Width=64, Height=64, Depth=l, Valid_bits_per_item=16 \

B-2

i

w

_j

m

m

i

*/ \

0xFFFF,0xFFFF,

0xC000,0x0000,
0xC000,0x0FFF,

0xC000,0x0C00,
0xC000,0x0C00,

0xC000,0x0FFF,
0xC000,0x0001,

0xC000,0x0001,
0xC7F0,0x0001,

0xCC01,0xE001,
0xCC07,0x3801,

0xCC03,0x83FI,

0xCC30,0xE319,

0xC3E6,0x3BI9,
0xC003,0xF319,
0xC000,0x0339,

0xC000,0x03EI,
0xC000,0x0001,

0xC000,0x0001,
0xC000,0x0001,

0xC000,0x0001,
0xC3FC,0xlE01,

0xC606,0x0601,

0xC006,0x0601,

0xFFFF,0xFFFF, 0xFFFF,0xFFFF, 0xFFFF,0xFFFF, \

0x0000,0x0003,0xC000,0x0000,0x0000,0x0003, \
0xFFFF,0xFC03,0xC000,0x0FFF, 0xFFFF,0xFC03, \

0x0000,0x0003,0xC000,0x0C00,0x0000,0x0003, \
0x0000,0x0003,0xC000,0x0FFF,0xFFFF, 0xFC03, \
0xFFFF,0xFC03,0xC000,0x0001,0x8000,0x0003, \

0xS000,0x0003,0xC000,0x0001,0xS000,0x0003, \

0xS000,0x0003,0xC3E0,0x0001,0x8000,0x0003, \
0x8060,0x0003,0xCC30,0x0001,0xSOF0,0x0003, \

0xFF80,0x0003,0xCC03,0xF001,0xFF98,0x0003, \
0xSI98,0x0003,0xCC07,0xlBEI,0xSIgF, 0xE003, \

0xSIgF,0xE003,0xCC01,0xC339,0xSI98,0x0003, \

0xS198,0x0003,0xC7F0,0x7319,0xSlgF, 0xE003, \
0xSI9F,0xE003,0xC007,0x3BI9,0xSI98,0x0003, \

0xSI98,0x0003,0xC001,0xE319,0xSI9F,0xE003, \
0xSI9F,0xE003,0xC000,0x03FI,0xSI98,0x0003, \

0xSOF0,0x0003,0xC000,0x0001,0xS060,0x0003, \
0x8000,0x0003,0xC000,0x0001,0xS000,0x0003, \

0xS000,0x0003,0xC000,0x0001,0x8000,0x0003, \
0xS000,0x0003,0xC000,0x0001,0xS000,0x0003, \

0xS000,0x0003,0xCIF8,0x0E01,0xFFE0,0x0003, \
0xFFE0,0x0003,0xC606,0xI601,0x8000,0x0003, \

0xS000,0x0003,0xC006,0x0601,0xS000,0x0003, \

0xS000,0x0003,0xC006,0x0601,0xS000,0x0003, \
0xC006,0x0601,0x8000,0x0003,0xC07C,0x0601,0xS000,0x0003,

0xC07C,0x0601,0xS000,0x0003,0xC006,0x0601,0x8000,0x0003,
0xC006,0x0601,0xS000,0x0003,0xC006,0x0601,0xS000,0x0003,
0xC006,0xC601,0xS000,0x0003,0xC606,0xC601,0x8000,0x0003,

0xC606,0x0601,0xS000,0x0003,0xC3FC,0xlF81,0xS000,0x0003,

0xCiFS,0xlFSI,0x8000,0x0003,0xC000,0x0000,0x0000,0x0003,
0xC000,0x0000,0x0000,0x0003,0xC000,0x0000,0x0000,0x0003,

0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF,0xFFFF

\

\
\
\

\
\

\

\

help
row
col

Graphical Representation of Algorithms, Structures
0
4O

and Processes

l/Edit_Diagrams
label

cmd

msg

[Edit Diagrams]

graspada ${Diagram_Name)
Control Structure Diagram Editor

///Diagram_Name
label Diagram Name(s):

text (,,)

All the Hex numbers are the bitmap representation of the CSD icon. The line cmd

graspada ${Diagram_Name} will specify what command to execute when the user selects
CSD icon and clicks on execute.

The dfe pspec_edit variable in ToolInfo file should be set as follows so that it

invokes GRASP/Ada instead of standard Pspec editor.

dfe_pspec_edit=graspada&

The sce_pdi..edit variable in ToolInfo file should be set as follows so that it invokes
GRASP/Ada instead of standard PDL editor.

sce_pdi_edit=graspada&

B-3

SUMMARY OF INTEGRATION STEPS

o Copy the ToolInfo and STPmenu.spec files from StP library to user's home directory.
Set the ToolInfo environment variable in .cshrc file to refer to the ToolInfo file in

user's home directory.

. Load the ToolInfo file (which is copied into user's home directory) into an editor and

modify the ToolInfo variable STPMenuSpec as follows:

STPMenuSpec='-/STPmenu.spec

, To invoke GRASP/Ada in place of Pspec editor,

dfe_.pspec_edit variable as follows:

d fe_pspec_edit=graspada

replace the ToolInfo variable

. To invoke GRASP/Ada in place of PDL

sce..pdl_edit variable as follows:

sce_pdl_edit=graspada

editor,replace the ToolInfo variable

. To invoke GRASP/Ada as an independent application (like DFE, SCE, etc.,) copy the

information provided above in the Structure of the Specification File to

STPmenu.spec file in user's home directory.

B-4

k ,

=

L__

i_==z

'r,l..]

.............................]/11111

I _ I_'_Jit¢ lltl,'.ll_'l: p,'oJec_.,_ illlll_l m',d_'," Iill_"ml

Figure 14. GRASP/Ada CSD Window with Pspcc for Generate_Invoice in SiP.

r_

B-5

Appendix C

F=

GRASP/Ada

Evaluation instrument

[]

m

C-0

k

w.m

Name

(opdonal)

Date

Evaluation of Graphical Representations for Algorithms

Several of the following graphical representations were briefly presented in class: flowcharts

(FC), Nassi-Shneiderman diagrams (NS), Warnier-Orr diagrams 0VO), action diagrams (AD), and

control structure diagrams (CSD).

During this course, which of the above diagrams were presented? Check the appropriate

responses.

FC NS WOAD CSD

.... J

Prior to this course, which of these diagrams had you used? Check the appropriate responses.

FC NS WO AD CSD

r_

Were any of the diagrams used in a professional setting? Check the appropriate responses.

FC NS WO AD CSD

Based on the experience you have gained by using these diagramming tools to represent

algorithms, you are asked to assign a rating to each of the diagrams with respect to a specific

comparison among the diagrams. You may assign the same rating to more than one diagram for

a given comparison. Select your ratings from the following scale and enter them as indicated

below.

5 - best / most / first choice

4-

3 - moderate

2-

1 - worst / least / last choice

C-1

2.

L ._

.

.

5.
w

r_ 6.

Compare the diagrams with respect to how well each shows sequence.

FC NS WOAD CSD

Compare the diagrams with respect to how well each shows selection.

FC NS WOAD CSD

m m m !

Compare the diagrams with respect to how well each shows iteration.

FC NS WO AD CSD

m m m m m

Compare these diagrams with respect to overall readability (consider reading someone

else's code).

FC NS WO AD CSD

Each of these tools can be used with informal pseudocode as opposed to actual statements

in a programming language and, as such, can be thought of as a graphical extension to

pseudocode (with possibly some spatial rearrangement). Rate the diagrams on the extent

to which they increase readability over non-graphical pseudocode.

FC NS WO AD CSD

Suppose as a programmer you are given a design specification in which the program logic

has been documented using one of the graphical representations below. Compare the

diagrams with respect to which would best facilitate your task of coding from the design

specification.

FC NS WO AD CSD

C-2

m z

g=d

-==_

= t

w

w

U

,

,

,

10.

11.

Compare the diagrams with respect to ease of manual use; consider the initial drawing

and subsequent modifications.

FC NS WOAD CSD

Assuming you have to manually draw the diagrams (in the sense that they are not

automatically generated), indicate your overall preference for each diagram where:

5 - first choice 1 - last choice

FC NS WOAD CSD

Compare the diagrams with respect to their overall economy (i.e., increases in

comprehension versus effort to draw them manually).

FC NS WO AD CSD

Assuming you have equivalent automated support to draw each of the diagrams in the

sense that the diagrams are automatically generated either by selecting constructs from

a menu or by recognizing key words in the code, indicate your overall preference for each

diagram where:

5 - first choice, 1 - last choice

FC NS WOAD CSD

All assumptions aside, indicate your overall preference for each diagram where:

5 - fh'st choice, 1 - last choice

FC NS WOAD CSD

L

• _;: a

12. It is not uncommon for individuals and organizations to introduce modifications (which

they consider to be improvements) to "standard" diagramming tools. These changes may

be to improve readability, to make the diagrams easier to work with manually, to make

them easier to automate, to provide for control flow other than sequence, selection,

iteration, etc. What improvements can you suggest for any of the diagrams we used in
this class?

C-3

J

L

H

Name Dam

(optional)

Evaluation of GRASP/Ada

In CSE 422 lab you were provided the opportunity to work briefly with GRASP/Ada, a prototype
reverse engineering tool for software written in Ada or AdaPDL. The prototype is currently
being evaluated prior to widespread release via the network. As a prototype, GRASP/Ada is

expected to undergo continual modification over the next year, especially with respect to

integration with commercially available CASE tools.

The current GRASP/Ada prototype includes automatic generation of Control Structure Diagrams
(CSDs). Future releases will include the generation of object diagrams. Your responses to the

items below are intended to provide the developers with directions for enhancements to the

prototype, including additional user interface requirements and overall functionality.

The GRASP/Ada Project is supported, in part, by funding from George C. Marshall Space Flight
Center, NASA, Alabama 35821 (Contract Number NASA-NCCS-14).

Was the User Interface intuitive?

N
D 2o What changes would you make to the User Interface?

o What were the major problems you encountered when using GRASP/Aria.

F:_

Q

C-4

L +

L ;

U

+ Rank the following items in order of importance in the prototype. Note, some of these
items are available in the current version and others are under consideration as

modifications/enhancements. Also, feel free to comment on each in the space provided.
(1 - least important, ..., 7 - most important)

a. __ Integration of CSD generation/editing capabilities with a CASE tool such
as StP to facilitate development of process pspecs and/or module PDL.

b. __ GRASP/Ada User's Manual.

w

C.

d*

__ Error messages resulting from CSD generation.

__ Integration of CSD editing/generation with automatic generation of object
diagrams to show software architectural design (i.e., the object diagrams
indicate the dependencies among a set of CSDs).

e° Spatial options (line spacing, amount of indentation, etc.).

atom

W

L +

f.

g.

Direct access to a compiler from the User Interface to facilitate use of the

CSD during implementation.

__ Extension of the CSD editor and generator to handle other languages such
as C and Pascal.

C-5

g.,

, Rate your knowledge of Aria.

excellent _ good moderate _ very little _ virtually none

7

* How useful was the Ada template feature in the CSD Window in producing Ada/PDL

CSDs?

extremely _ very _ moderately _ not very _ not useful

What modificationsftmprovements should be made to this feature?

t: _:_

H

o The time in class spent on Ada and/or AdaPDL

should have been increased. _ was about right.

Comments?

should have been

decreased.

z_

W

m

8_ CSD editors and generators are planned for C and Pascal. If these tools were available

on the network, how useful would they be to you with respect to improving the

readability of your source code in future software development projects?

C-

extremely _ very _ moderately _ not very _ not useful

Pascal:

extremely __ very _ moderately _ not very _ not useful

C-6

